
Representing and working with almost none
of the integers the suckless way

or
the design, decisions, and discoveries behind and from libzahl

Mattias Andrée ⟨maandree@kth.se⟩

Copyright © 2016 Mattias Andrée ⟨maandree@kth.se⟩
Permission to use, copy, and/or distribute, but not modify, this document for any
purpose with or without fee is hereby granted, provided that the above copyright
notice and this permission notice appear in all copies.

mailto:maandree@kth.se
mailto:maandree@kth.se


2

Abstract

This is a technical discussion about the design and decisions
behind libzahl, a big integer library whose goal align with the suckless
philosophy: simplicity, clarity, and frugality. These are not goals of
numeric libraries, traditionally; they are difficult to combine with
performance when the performance is dependent on algorithms. Is it
possible to create a simple big number library competitive with the
fastest big number libraries around?



3

What is libzahl?
libzahl1 is a big integer library. It aims only to support integers and to be
suckless2. Principal questions in its development include:

1. How much complexity is acceptable?

2. What functions do we really need to implement?
Omitting functions is not about reducing complexity; they are independent and do not contribute

to complexity. It is about not wasting time on stuff we do not need, and about keeping the API

simple and easy to learn.

3. When is it worth using assembly?
The reason for avoiding assembly is simply that it is not portable and cannot replace C code.

4. Which functions used internally should also be available via the API?
This is about API stability and API simplicity.

5. How can the API and use of libzahl suck less?

In a typical suckless project, question 2 is the central question, albeit
for other reasons, and question 1 need not be considered and complexity
is always minimised. There are of course a few programs, e.g. diff, where
question 1 is important. This is when the program needs an algorithm but
needs to do optimisation for the algorithm to work on all common input
without exhausting memory or taking too long, the latter is of course why
this question is asked in libzahl. Question 5 is also asked for suckless libraries.

libzahl does not try to fit suckless into performance, but tries to fit
performance into suckless. This is an important distinction, simplicity will
not be significantly sacrificed for better performance.

The first release (version 1.0) of libzahl was tagged one week after its
initial commit. The initial commit was made a day or two after the project
began, I don’t recall exactly. libzahl has not changed too much since.

1http://libs.suckless.org/libzahl
2http://suckless.org/philosophy

http://libs.suckless.org/libzahl
http://suckless.org/philosophy


4

Initialise the library
Unlike other bigint libraries, the user must initialise libzahl before it is used.
The original reason for this is that libzahl uses global variables for temporary
storage of big integers it uses internally. Hence, big integer constants, a
preallocated stack which we will discuss later, and explicit zeroing of global
memory have been added.

This function, which the user must call, is named zsetup. It could easily
have been avoided by using ‘‘constructors’’.

static void __attribute__((__constructor__))
init_libzahl(void)
{

zsetup();
}

However, as you can see, constructors are a compiler-extension, and using it
would make libzahl compiler-unportable. Worse, I don’t believe construc-
tors are advantageous enough to warrant inclusion in a suckless compiler.
However, we will see momentarily that letting the user call zsetup is the
only viable option for libzahl’s design — I left one thing out.



5

Dealing with exceptional conditions
The best way to deal with exceptions is the C way: checking the return
value, and in extraordinary cases: the value of a global lvalue (named errno
in C). For example

if (write(fd, buf, n) < 0)
"handle error";

This method is very clean and makes the programmer perfectly aware of
what is going on and what could go wrong. The author of ØMQ has a great
article that discusses some aspects of this.3

A less common strategy in C is to use long jumps (setjmp). This strategy
was selected for libzahl. Its advantages are:

• Less branching, thus better performance.4

• Fewer error-checks to clutter the code.

These advantages can be seen both in the user software and in the library.
Obviously the advantages of the traditional method are lost (except it is
even cleaner), but since we do not really expect errors to occur and we
basically know which errors can occur, not much is actually lost. The real
disadvantage, however, is that unwinding changes, such as freeing temporary
allocations, on error become much more difficult. In libzahl, all temporary
allocations are available as global variables, or are pushed onto a stack, and
are freed on error. Consequently, all temporary variables that are created by
recursive functions are pushed onto a stack when they are initialised, and
freed in reverse order. This excerpt from libzahl’s multiplication function
demonstrates this principle:

zinit_temp(b_high);
zinit_temp(b_low);
zinit_temp(c_high);
zinit_temp(c_low);
/* Do some maths. */
zfree_temp(c_low);
zfree_temp(c_high);
zfree_temp(b_low);
zfree_temp(b_high);

3http://250bpm.com/blog:4
4However, branching is unbelievably cheap on modern CPU:s.

http://250bpm.com/blog:4


6

To enable long jumps, a return point must be selected. When designing
libzahl, there were two choices for how this could be done:

/* Alternative 1: */
int
zsetup(void)
{

if (setjmp(jmppoint))
return 1;

/* Initialise. */
return 0;

}

int
main(void)
{

if (zsetup())
"handle error";

/* Do stuff. */
}

/* Alternative 2: */
void
zsetup(jmp_buf jmp)
{

*jmppoint = *jmp;
/* Initialise. */

}

int
main(void)
{

jmp_buf jmp
if (setjmp(jmp))

"handle error";
zsetup(jmp);
/* Do stuff. */

}

The second alternative was chosen for libzahl because it is slightly more
flexible, and the complexity is the same if you consider both the user program
and the library. Another advantage with this option is that the compiler is
aware that setjmp can return multiple times in the same process — and is
aware of setjmp’s return-value semantics, — and can warn the developer
of its consequences: non-volatile variables with automatic store duration
may contain unspecified values.5

The return point for the long jump can be updated by calling zsetup
with a new return point. Reinitialisation is only performed if zunsetup has
been called.

To be clear, error handling by long jumps is usually a bad idea.

5longjmp(3p). (No, it is not documented in setjmp(3p).)



7

Function names
An important part of making the API simple is to use intuitive, short, and
familiar function names, in contrast to technical and mathematical names.
Below is a list of libzahl function names side-by-side with corresponding
GNU MP6 function names, where the names differ in more than namespace.

zfree mpz_clear
zsave mpz_out_raw
zload mpz_inp_raw
zstr mpz_get_str(, 10,)
zsets mpz_set_str(,, 10)
zsetu mpz_set_ui
zseti mpz_set_si
zptest mpz_probab_prime_p
zbtest mpz_tstbit
zbset(,,, 1) mpz_setbit
zbset(,,, 0) mpz_clrbit
zbset(,,, -1) mpz_combit
zcmpu mpz_cmp_ui
zcmpi mpz_cmp_si
zcmpmag mpz_cmpabs
zeven mpz_even_p
zodd mpz_odd_p
zsignum mpz_sgn
zor mpz_ior
zbits mpz_sizeinbase(, 2)
zlsb mpz_scan1(, 0)
zlsh mpz_mul_2exp
zrsh mpz_tdiv_q_2exp
ztrunc mpz_tdiv_r_2exp
zdiv mpz_tdiv_q
zmod mpz_tdiv_r
zdivmod mpz_tdiv_qr
zpowu mpz_pow_ui
zmodpow mpz_powm
zmodpowu mpz_powm_ui
zrand(,, UNIFORM,) mpz_urandomm

In zsets, zsetu, zseti, zcmpu, zcmpi, zpowu, and zmodpowu, the last
letter lets us know the type of one of the parameters. These letters are ‘s’,
‘u’, and ‘i’ which are derived from the printf/scanf-format string codes

6https://gmplib.org/

https://gmplib.org/


8

‘%s’, ‘%u’, and ‘%i’, respectively. This idea is also used in GNU MP, but
the suffixes are ‘_str’, ‘_ui’, and ‘_si’, which are probably derived from
‘‘string’’, ‘unsigned int’, and ‘signed int’, respectively. GNU MP also
has ‘_d’ for ‘double’.

We can also observe how modulus is indicated by the function names.
In libzahl, division and modulus is named zdivmod, which is derived from
‘‘Zahlen, division and modulus’’. Modular multiplication (not listed above)
and modular exponentiation are called, respectively, zmodmul and zmodpow,
derived from ‘‘Zahlen, modular multiplication’’ and ‘‘Zahlen, modular
power’’. ‘mod’ comes before the base operation name if it is a modular
arithmetic function, but if it calculates the modulus of the input, ‘mod’ is at
the end. In GNU MP, ‘m’ is appended to the base operation’s name if it is a
modular variant, and for division/modulus, the affixes ‘_q’ and ‘_r’ (where
‘_’ is shy) are used to tell whether the quotient or the remainder is returned.

In GNU MP, we can see that the suffix ‘_p’ is used to indicate that it is
a predicate (returns true or false7).8 In libzahl we skip this, you know it is a
predicate. Similarly, you know zor is inclusive, so there is no ‘i’ in there to
tell you so. You would probably forget the ‘i’ if it was there, or not think to
try it if you haven’t read the documentation.

Another interesting difference is the naming of zsignum and mpz_sgn.
‘sgn’ is the mathmatical abbreviation for ‘signum’, but it could also be
confused with ‘sign’. The signum function is defined as

sgn x =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 if x < 0
0 if x = 0
1 if x > 0

,

but there is some ambiguity to what ‘sign’ means: what is the sign of 0, and
how are negative and positive — and potentially zero — encoded?

7Of course GNU MP is a little lax about this in the case of mpz_probab_prime_p
which can return ‘‘not only probably, it is definitely a prime’’.

8http://www.catb.org/~esr/jargon/html/p-convention.html

http://www.catb.org/~esr/jargon/html/p-convention.html


9

Parameter order
A second important part of making the API simple is to order parameters
in an intuitive order. Results cannot be returned as the function’s return
value for technical reasons, lest there will be a drastic performance penalty
and using the library will become messy. Traditionally, in C, the output
parameters are at the end of the parameter list, or in case the function
is variadic, at the beginning of the parameter list. There are of course a
few odd-cases like read — where the output is in the middle, — but these
usually make sense. We call this [output is last] BSD MP-style. GNU MP
put the output parameters at the beginning.

BSD MP-style GNU MP-style
add(augend, addend, sum); add(sum, augend, addend);

This can be compared with how it would be expressed in pseudocode and
mathematics:

BSD MP-style GNU MP-style
augend + addend→ sum sum← augend + addend
augend + addend =∶ sum sum ∶= augend + addend

sum ≜ augend + addend

BSD MP-style is used in LibTomMath9 and TomsFastMath10, whilst
GNU MP-style is used in libzahl and Hebimath11.

Since you are doing mathematics with libzahl, it is natural to order the
parameters in the same order as in mathematics, and in a way that makes
it easier to translate from pseudocode.

9https://github.com/libtom/libtommath
10https://github.com/libtom/tomsfastmath; not a true bignum library.
11https://github.com/suiginsoft/hebimath

https://github.com/libtom/libtommath
https://github.com/libtom/tomsfastmath
https://github.com/suiginsoft/hebimath


10

Reduced function set
libzahl avoids compound functions, such as initialise and assign in one single
function, or initialising multiple big integers. The only compound functions
available in libzahl are:

zdivmod Calculates the quotient and the remainder. This is available
because when you calculate the quotient you get the remainder
for free. zdiv and zmod simply call zdivmod with the dummy
variable as one of the output variables.

zsplit Combines zrsh and ztrunc. It is useful for divide-and-conquer
algorithms. It orders the calls to zrsh and ztrunc so that it is
safe to use input variables as output variables too.

Compound functions pollute the API and seldom make the user code
cleaner. If the user needs compound functions, they can easily be implemented
as simple macros. Variadic functions like multi-integer initialisation and
multi-integer deinitialisation are not only seldom especially useful, they are
also slower and the overhead can be avoided with macros.12

libzahl also does not have variants of functions that take an intrinsic
integer instead of a big integer as one of the input parameters, with the
exception of exponentiation functions and comparison. The former exception
is simply because raising a number to more than the (264 − 1)th power is
probably uncommon, and would — provided that the base is not −1, 0, or 1
— result in a number too large to be stored. Similarly, the latter exception
is because it turns out it is very common that we want to compare against
small constants. Exponentiation is also significantly faster when working on
an intrinsic type as the exponent. Currently, zpow and zmodpow, which do
not take an intrinsic integer as the exponent, do not convert the exponent
to an intrinsic integer.

In most cases, taking intrinsic integers as an input does not provide a
significant performance improvement. If the user wants to use an intrinsic
integer, she can either have preassigned constants or use a preinitialised
variable for temporary storage, like so:

12See libzahl reference manual, section ‘‘Variadic initialisation’’.

http://libs.suckless.org/libzahl-refman.pdf


11

static z_t addu_temp;
static z_t one;

static inline void
addu(z_t r, z_t a, uint64_t b)
{

zsetu(addu_temp, b);
zadd(r, a, addu_temp);

{

static inline void
inc(z_t r, z_t a)
{

zadd(r, a, one);
{

int
main(void)
{

zinit(addu_temp);
zinit(one);
zseti(one, 1);
/* Do stuff. */

}



12

Not implemented here
When implementing a function, there is a responsibility to make sure it is
correct, robust, cannot leak resources even on failure, and is optimised. There
is also a responsibility for libzahl to keep the implementation as simple as
possible whilst achieving this. Therefore, only functions that are absolutely
necessary: really common functions, and functions that are unrealistic for
users to implement reasonably optimised on their own outside libzahl.

The set of functions implemented in libzahl is fairly small. Functions that
are not implemented in libzahl often have a prototypical implementation,
or mathematical expression, in the manual, so that it will be easier for users
that do need the functions. This list is fairly large.13

Notable functions that have been left out from libzahl include:

• Extended greatest common divisor
• Least common multiple
• Modular multiplicative inverse
• Random prime number generation
• Legendre/Jacobi/Kronecker symbol
• Roots
• Modular roots
• Factorial
• Fibonacci/Lucas numbers

libzahl only provides truncated division. That is, rounded towards zero.
This is the simplest division to implement and is also the division you will
find in C99,14 and newer revisions of ISO C, and is the most intuitive. In
this division, modulo has the same sign as the dividend, and the absolute
value of the remainder is less than the absolute value of the divisor.

There are several other ways to round values.15 The libzahl manual in-
cludes prototypical implementations for variants of zdivmod that implement
the standard tie-breaking rules.16

13See libzahl reference manual, section ‘‘Not implemented’’.
14http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf, page 82 (94)
15https://en.wikipedia.org/wiki/Rounding#Rounding_to_integer
16See libzahl reference manual, section ‘‘Division’’.

http://libs.suckless.org/libzahl-refman.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
https://en.wikipedia.org/wiki/Rounding#Rounding_to_integer
http://libs.suckless.org/libzahl-refman.pdf


13

Memory management
One problem in designing a bignum library is how to handle memory.
Should the user allocate memory manually? This is probably the best for
performance. The user can use dynamic memory allocation only when it is
necessary. On the other hand, this makes the library less friendly, and there
would be a lot of memory allocation and memory allocation related code in
the user program. Additionally, recursive functions, such as multiplication,
may require memory to be allocated at each recursion. This memory could
be allocated with either a malloc-family function, or with alloca. The
problem with alloca however is that if it cannot allocate enough memory
the program crashes, and it is too difficult to predict — without crashing on
failure, or by forking — whether it will be successful.17 alloca requires that
we either crash when we run out of memory, or perform costly operations
to predict and prevent crashing.

Since libzahl requires optimised dynamic memory allocation internally,
and letting the user do memory allocation would make the user program
cluttered, libzahl does all memory allocation. It is however possible for the
user to preallocate memory if she knows what she is doing.

To optimise dynamic memory allocation, libzahl uses a memory pool
which consists of allocation buckets where all allocations have a size that is
a power of two, plus a few fluff-bytes.18 The buckets have a growth factor
of 1.5.

17https://github.com/maandree/slibc/blob/d65f8ac/src/alloca/needstack.
c#L28-L82

18See libzahl reference manual, section ‘‘Integer structure’’.

https://github.com/maandree/slibc/blob/d65f8ac/src/alloca/needstack.c#L28-L82
https://github.com/maandree/slibc/blob/d65f8ac/src/alloca/needstack.c#L28-L82
http://libs.suckless.org/libzahl-refman.pdf


14

Future directions
In the future, modular multiplication and modular exponentiation may be
removed and archived in the manual. It does not appear that modular
bignum arithmetic is particularly useful outside cryptography — a field
that libzahl does not intend to cover. Supporting cryptography means
that side-channel attack resilient versions of all functions must be written
(sometimes this entails adding alternative less performant implementations).
This requires cryptographic expertise that I do not possess. I do welcome
cryptographers to start a cryptographic branch or cryptographic bignum
library that uses libzahl.

Currently libzahl is not thread-safe, but is designed to work well on
clusters and in multiprocess19 applications. This may or may not be amended
in the future. Thread-safety is a problem because libzahl uses global variables.

The stochastic superoptimiser STOKE20 will most probably be used in the
future. Traditional superoptimisers exhaustively try possible optimisations
based on known rewrite rules. Before doing this, STOKE tries to synthesise
equivalent programs which cannot be reached with these optimisation rules.
My primary hope with STOKE is not to get faster binaries, but to get
simpler source code — faster binaries is a bonus. STOKE has been tested
on OpenSSL’s modular multiplication algorithm, so the outlook is good.
Hopefully, we can even rid ourselves of assembly code. Currently there is
trace amounts of extended inline assembly in libzahl, which is a compiler-
extension.

libzahl will probably not use CPU dispatching21. If it is added, it will
be on an opt-in basis. (This would be useful for distributions that ship
binaries.)

libzahl is an integer-only library. In the future we need at least also
rationals and floating-points. This will not be implemented in libzahl. They
should be separate libraries from both libzahl and each other, but should
depend on libzahl.

19Be sure you read ‘‘process’’, not ‘‘processor’’.
20https://cs.stanford.edu/people/sharmar/pubs/asplos291-schkufza.pdf
21Calling different versions of a function based on the CPUID.

https://cs.stanford.edu/people/sharmar/pubs/asplos291-schkufza.pdf


15

Can GNU MP be beaten?
Outperforming GNU MP, with all its decades of development22 from com-
puter scientists and mathematicians23, may seem like a futile task. GNU MP
has been optimised to work for all ranges of sizes, from the tiny to the
very huge, and is explicit about performance being more important than
simplicity or elegance.24 How could libzahl, written by one person, be able
to compete with GNU MP in the ranges of integers with tens of milliards of
bits25?

Optimising for integers so large most computers can only fit one of them
in memory is not important. I’m focusing on 100 to 4096 bits, a range I
believe covers almost all uses. And the performance is promising in this range;
outperforming most competitors for most functions already.26 However, only
acceptable performance is necessary for this to be a successful project in my
opinion. When this range has been optimised fully, I will move on to 8K
bits, and perhaps larger later still.

And we must not forget that progress made in one bignum library can
be reused and refined in other bignum libraries.

Another question that has come up is whether it is fair to compare
high-level functions, should you not compare low-level functions? I hope
that the difference in performance is not more than a small O(1) overhead,
if this is not the case, there is obviously something wrong. Even if not, I
do not believe that comparing low-level functions is the right thing to do.
Low-level functions are only recommended if all nanoseconds per second of
performance is important. For most users it is not, and low-level functions
in GNU MP are quite a chore and should not be bothered with unless it is
necessary.27

But there are advantages with libzahl over GNU MP that do not have
to do with performance:

• it is better suited for small computers,

• it only uses POSIX-standardised libc functions, so it can for example
be compiled with glibc but linked with musl,

• it is suckless, so it is inherently easier to fix bugs, but bugs are also
less probable,

22Let us assume that it does not indicate decades of legacy.
23Four active developers.
24https://gmplib.org/manual/Introduction-to-GMP.html
25Also known as gigabytes.
26http://git.suckless.org/libzahl/tree/STATUS
27https://gmplib.org/manual/Low_002dlevel-Functions.html

https://gmplib.org/manual/Introduction-to-GMP.html
http://git.suckless.org/libzahl/tree/STATUS
https://gmplib.org/manual/Low_002dlevel-Functions.html


16

• it is suckless, so it is better for teaching programming and bignum
algorithms (in my opinion, it beats LibTomMath whose goal is educa-
tion).



17

Benchmarking
Nobody does benchmarks right. Hence the inclusion of this here. Please
suggest improvements!

To assess libzahl’s performance, libzahl, GNU MP, LibTomMath, Toms-
FastMath, and previously Hebimath28, are benchmarked and the results
compared. The libraries are benchmarked under equal conditions; translation
layers, in form of macros, and static inline functions when necessary,
are used to translate libzahl-calls to calls for other libraries without penalty.
When there are slight differences in the functions, such as whether a bound-
ary for random number generation is inclusive or exclusive, this discrepancy
is not adjusted. That is, the translations are intentionally not perfect, but
there is not performance penalty. Additionally, when a function is missing, it
is given an unoptimised implementation. These implementations are meant
to mimic how the user would implement the function, not how the library’s
developer would.

Input for functions are balanced, but I intend to benchmark with unbal-
anced input later on where it is necessary. Currently, all functions are only
tested for one input, but I hope to benchmark for worst case, average case,
and best case in the future.

For each input, a function is run a number of times, 1000 times for fast
functions. The results are sorted and the middle seventh is selected, and an
arithmetic average is calculated for these. I have arrived to this method by
testing a number of simple methods. This method seems to produce graphs
with low entropy. When I run the benchmarks I run them between 50 and
500 times depending on how long I can wait for the results. For each input,
the fastest result is selected. The results are very stable; if this is redone the
new results do not differ significantly, if at all.

Before the benchmark starts, the process is fixed to one CPU. I never run
two benchmarks concurrently, as interference could be tangible, especially if
you are not careful about to which CPU:s you assign the processes.

I am planning to add a warm-up loop to force the CPU to throttle
itself (to overheating). This loop would run until the frequency is set to
the minimum. Of course, the scaling governor would be set before this
loop begins, and reset when the process exits. This warm-up is intended to
prevent the CPU from being throttled mid-benchmarking.

28Hebimath is no longer benchmarked because it was not stable enough.



18

On x86-64, the function below is used to measure the time:

static inline void
rdtsc(unsigned int *lo, unsigned int *hi)
{

__asm__ __volatile__ ("rdtsc" : "=a"(*lo), "=d"(*hi));
}

Only after the benchmark loop exits are lo and hi composed to a single
integer. hi is left-shifted 32 bits, and the values are than OR:ed.

RDTSC is the most precise time measurement facility available, however it
requires that the process is constrained to one CPU,29 this way the process
is set to only run on a preselected CPU.

29https://www.strchr.com/performance_measurements_with_rdtsc

https://www.strchr.com/performance_measurements_with_rdtsc


19

Optimisations
One of the most important generic optimisations is loop-unrolling.30 One can
easily be fooled into thinking that the more you unroll a loop, the faster it
will be. From my experience with libzahl, I have found that either unrolling
by 4 or not at all is optimal.31 Because of this, libzahl always allocates 4
extra characters32 to its integers, we call this ‘fluff’. This way, unrolled code
does not need to care about the precise size of an integer, it can assume
that it is a multiple of 4 characters and disregard that it may not start at
the multiple of 4 characters into the character-array. This optimisation can
almost always be done; it can be a problem if it stops before the end of the
character-array. Of course, there is no reason to think 4 is always optimal.
Start with 2 and unroll by 1 more until you find the optimal; don’t just
unroll as much as possible.

GCC does not unroll loops by default with any of the -O flags. Of course
if you want to do this optimisation of pretending that it is a multiple of 4
bytes, optimising compilers will not help you. But it is worth remembering
that you cannot expect loop-unrolling to be done if your function is compiled
in the user application.

Whilst it is understandable that the compiler does not know what you
are doing, so you have to optimise non-trivial code yourself, it is notable
that the compiler does not always know what it is doing. A simple case of
this can be found in libzahl: the function zswap that swaps the members of
two structure instances. It can be trivially implemented as

void zswap(z_t a, z_t b)
{ z_t t; *t = *a, *a = *b, *b = *t; }

This implementation is about a third as fast as the implementation found
in libzahl. The problem is that the compiler does not compile *x = *y effi-
ciently for struct:s. By swapping each member of the structure individually
manually, the performance is improved by a factor of between 2.8 and 2.9.
Further performance can be gained by converting the struct to a long*
and swapping each element, effectively swapping padding space too.

In developing libzahl, I have also noticed that modern CPU:s are incred-
ibly good at branching. If you have to choose between performing a simple

30http://www.csc.kth.se/utbildning/kth/kurser/DD2440/avalg11/dokument/
gmp_slides.pdf

31The STOKE developers have probably noticed this too, they unroll by 4 in their
whitepaper.

32Characters being defined as a 64-bit word.

http://www.csc.kth.se/utbildning/kth/kurser/DD2440/avalg11/dokument/gmp_slides.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DD2440/avalg11/dokument/gmp_slides.pdf


20

operation, such as addition, or a conditional move, you should seriously con-
sider a conditional move, and you should absolutely consider implementing
the conditional move with a conditional jump and a move instruction.



21

Acknowledgements
For contributions to this paper and libzahl’s design (including ideas yet
untested), I would like to thank33:

• Marc Collin for proofreading,

• Suigin for letting Marc Collin, and indirectly the libzahl project, know
about STOKE,34

• Laslo Hunhold for contributing his design ideas, and

• prior art in general, software should be built on top of prior art even
when from scratch and not try to blindly reinvent the wheel.

33In reverse chronological order, because it should never be too late to get your name
on the top! (Hint, hint.) (It also makes it easier to edit.)

34http://bbs.progrider.org/prog/read/1447711906/138,139

http://bbs.progrider.org/prog/read/1447711906/138,139

