- Contemporary messages sorted: [ by date ] [ by thread ] [ by subject ] [ by author ] [ by messages with attachments ]

From: <git_AT_suckless.org>

Date: Mon, 25 Jul 2016 16:57:13 +0200 (CEST)

commit 4d2e79e7eec793a557c26d1253bcfc13f6b555d6

Author: Mattias Andrée <maandree_AT_kth.se>

AuthorDate: Mon Jul 25 15:58:29 2016 +0200

Commit: Mattias Andrée <maandree_AT_kth.se>

CommitDate: Mon Jul 25 15:58:29 2016 +0200

Style fix

Signed-off-by: Mattias Andrée <maandree_AT_kth.se>

diff --git a/doc/exercises.tex b/doc/exercises.tex

index 23b8ef4..e89c2b3 100644

--- a/doc/exercises.tex

+++ b/doc/exercises.tex

_AT_@ -168,13 +168,13 @@ For improved performance, instead of using \texttt{zmod},

you can use the recursive function

%

\( \displaystyle{

- k ~\mbox{Mod}~ 2^n - 1 =

+ k \mod (2^n - 1) =

\left (

- (k ~\mbox{Mod}~ 2^n) + \lfloor k \div 2^n \rfloor

- \right ) ~\mbox{Mod}~ 2^n - 1,

+ (k \mod 2^n) + \lfloor k \div 2^n \rfloor

+ \right ) \mod (2^n - 1),

}\)

%

-where $k ~\mbox{Mod}~ 2^n$ is efficiently calculated

+where $k \mod 2^n$ is efficiently calculated

using \texttt{zand($k$, $2^n - 1$)}. (This optimisation

is not part of the difficulty rating of this problem.)

Received on Mon Jul 25 2016 - 16:57:13 CEST

Date: Mon, 25 Jul 2016 16:57:13 +0200 (CEST)

commit 4d2e79e7eec793a557c26d1253bcfc13f6b555d6

Author: Mattias Andrée <maandree_AT_kth.se>

AuthorDate: Mon Jul 25 15:58:29 2016 +0200

Commit: Mattias Andrée <maandree_AT_kth.se>

CommitDate: Mon Jul 25 15:58:29 2016 +0200

Style fix

Signed-off-by: Mattias Andrée <maandree_AT_kth.se>

diff --git a/doc/exercises.tex b/doc/exercises.tex

index 23b8ef4..e89c2b3 100644

--- a/doc/exercises.tex

+++ b/doc/exercises.tex

_AT_@ -168,13 +168,13 @@ For improved performance, instead of using \texttt{zmod},

you can use the recursive function

%

\( \displaystyle{

- k ~\mbox{Mod}~ 2^n - 1 =

+ k \mod (2^n - 1) =

\left (

- (k ~\mbox{Mod}~ 2^n) + \lfloor k \div 2^n \rfloor

- \right ) ~\mbox{Mod}~ 2^n - 1,

+ (k \mod 2^n) + \lfloor k \div 2^n \rfloor

+ \right ) \mod (2^n - 1),

}\)

%

-where $k ~\mbox{Mod}~ 2^n$ is efficiently calculated

+where $k \mod 2^n$ is efficiently calculated

using \texttt{zand($k$, $2^n - 1$)}. (This optimisation

is not part of the difficulty rating of this problem.)

Received on Mon Jul 25 2016 - 16:57:13 CEST

*
This archive was generated by hypermail 2.3.0
: Mon Jul 25 2016 - 17:00:23 CEST
*